Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.
نویسندگان
چکیده
Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.
منابع مشابه
Adventures in Membrane Protein Topology
The molecular aggregate size of the closed state of the colicin E1 channel was determined by fluorescence resonance energy transfer experiments involving a fluorescence donor (three tryptophans, wild-type protein) and a fluorescence acceptor (5-(((acetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (AEDANS), Trp-deficient protein). There was no evidence of energy transfer between the donor and ...
متن کاملMultiple interactions between transmembrane helices generate the oligomeric alpha1b-adrenoceptor.
Combinations of coimmunoprecipitation, single-cell fluorescence resonance energy transfer, and cell-surface time-resolved fluorescence resonance energy transfer demonstrated protein-protein interactions and quaternary structure for the alpha(1b)-adrenoceptor. Self-association of transmembrane domain 1 and its interaction with the full-length receptor indicated a symmetrical interface provided b...
متن کاملSimulation and Analysis of Fret in the Study of Membrane Proteins
A new formalism for the simultaneous determination of the membrane embedment and aggregation of membrane proteins is developed. This method is based on steady-state Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed fluorescence labeled proteins in combination with global data analysis utilizing simulationbased fitting. The simulation of FRET was validated b...
متن کاملSingle-Vesicle Fusion Assay Reveals Munc18-1 Binding to the SNARE Core Is Sufficient for Stimulating Membrane Fusion
Munc18, an essential regulatory protein for intracellular membrane fusion mediated by SNAREs, is known for stabilizing the closed conformation of syntaxin through the interaction with the N-terminal Habc domain (amino acids 28-146) of syntaxin. In addition, Munc18 accelerates membrane fusion and its interaction with SNARE core and the N-peptide (amino acids 1-24) of syntaxin is thought to be ne...
متن کاملMolecular orientation of factor VIIIa on the phospholipid membrane surface determined by fluorescence resonance energy transfer.
F (Factor) VIIIa binds to phospholipid membranes during formation of the FXase complex. Free thiols from cysteine residues of isolated FVIIIa A1 and A2 subunits and the A3 domain of the A3C1C2 subunit were labelled with PyMPO maleimide {1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)-oxazol-2-yl]pyridinium methanesulfonate} or fluorescein (fluorescence donors). Double mutations of the A3 domain (C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2007